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SUMMARY

This paper presents a finite element analysis based on the Lagrangian description for unsteady incompress-
ible viscous fluid flow with a free surface. The behaviour of the fluid is expressed by the unsteady
Navier-Stokes equation. For numerical integration in time the fractional step method is used. This method
is useful because one can use the same linear interpolation functions for both velocity and pressure. In this
paper, four variations of the fractional step method are presented and the numerical results are compared.
To confirm the effectiveness of these methods, solitary wave propagation is analysed.
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1. INTRODUCTION

The analysis of unsteady incompressible viscous fluid flow with a free surface is of practical
importance in the field of engineering. In this analysis, velocity and pressure should be determined
considering the free surface. The position of the free surface is also unknown. Moreover, the
boundary condition on the free surface is expressed by a complicated non-linear equation.
Therefore the free surface flow is one of the most difficult problems to be solved by the numerical
method. The problem is usually analysed on the basis of the Eulerian description, but it is rather
inconvenient to express the complicated free surface configuration. Thus this paper uses the
method based on the Lagrangian description. Employing the Lagrangian description, all finite
elements in the analysis domain will move with the fluid. This fact considerably simplifies the
treatment of the movement of the free surface boundary, which is varying in time.

The basic equation of the present method is the unsteady Navier-Stokes equation. For
numerical integration in time the fractional step method is employed. In general, to solve the
unsteady Navier—Stokes equation using the finite element method, the polynomial interpolation
of velocity must be one order higher than that of pressure. This is usually called mixed
interpolation. However, if mixed interpolation is used, the formulation itself, the computer
programme and the preparation of the input data are quite complicated. In contrast to this, the
linear interpolation function of the same order can be used for both velocity and pressure in the
analysis of the fractional step method. Thus this method makes the computational scheme
extremely simple.

The fractional step method is classified as one of the semi-implicit schemes. The unsteady
Navier-Stokes equation can be transformed into a form in which velocity and pressure can be
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computed in an independent manner, i.e. velocity is computed by the explicit scheme and pressure
is obtained by the implicit scheme using the resultant velocity. For the interpolation function the
three-node triangular element is employed for both velocity and pressure. The velocity correction
method is one of the fractional step methods. The basic idea of this method was originally
presented by Chorin' for the finite difference method. Donea et al,>3® Schneider and co-
workers,* > Glowinsky et al.,° Mizukami and Tsuchiya’ and Kawahara and Ohmiya® have
adopted a similar approach to the Eulerian description of the Navier-Stokes equation in the case
of the finite element method. In this paper the velocity correction method for the Lagrangian
equation system is presented and is called Method A. Ramaswamy and co-workers”'® and
Kawahara and Anjyu'! have presented the Lagrangian finite element method. An improved
method of this type, called Method B, is used in this paper. There are several problems with the
boundary condition in these two methods. Thus two other methods, Methods C and D, are also
presented in this paper. Method D employs the iteration based on Method C, but numerical
experiments performed by the authors’ group show that the numerical computation by Method
C is more effective in practice. Moreover, Ramaswamy and Kawahara'? have presented the
arbitrary Lagrangian—Eulerian (ALE) finite element method. The ALE technique is suitable for
the computation of highly non-linear problems, but this requires a large amount of computa-
tional time. Thus the Lagrangian method is more recommendable from the computational point
of view. To validate these methods, solitary wave propagation has been analysed. Using the
numerical experiments, the efficiency of the methods presented in this paper is discussed and
compared.

2. BASIC EQUATIONS

Throughout this paper the equations are described using indicial notation and the summation
convention for repeated indices. Two-dimensional unsteady incompressible viscous flow is dealt
with, which is expressed by the unsteady Navier-Stokes equation. Let V be the fluid domain
surrounded by a piecewise smooth boundary S.

The basic equations can be expressed using the fixed Cartesian co-ordinate system x; shown in
Figure 1. This co-ordinate system is usually referred to as the Eulerian co-ordinate system. The
velocity and pressure fields are defined as functions of the spatial co-ordinate x;:

u;=u(x;, t), (1)
p=p(x:t). @

Spatial domain

Material domain

Figure 1. Co-ordinate system
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The equation of motion can be written as

Du,-

1 .
Dt xi+;p,;-v(ui,j+uj,i),j=f; m V, (3)

where p, v and f; denote fluid density, kinematic viscosity coefficient and body forces respectively.
A subscript comma ‘i’ denotes differentiation with respect to co-ordinate x;, while (D/Dt)|,,
means differentiation with respect to time ¢ on the condition that co-ordinate x; is fixed. The
equation of continuity is

Ui, i=0 in ¥. (4)

The boundary S consists of two types of boundaries: one is the boundary S, on which velocity
is given; the other is the boundary S, on which the surface force is specified. The boundary
conditions for the basic equations can be expressed in the form

ui=12i on Sl, (5)

1 N
(—;péij+v(ui,j+uj,i)>'nj=t,~ on SZ, (6)

where the superscript caret denotes a function which is given on the boundary, n; means the
direction cosine of the outward normal to the boundary with respect to co-ordinate x;, and J;; is
Kronecker’s delta. The free surface condition is expressed as

Dy

Y =0 on S, )]

Xi

where 1 is the position of the free surface and S; means the free surface. As the initial condition,
velocity and pressure are given over the whole flow field:

u;=uf(x:), ®)
pzpo(xi), (9)

where 1 and p° are velocity and pressure at time ¢ =0 respectively.

The first term on the left-hand side of equation (3) represents the material differentiation.
Introducing the material co-ordinate X;, velocity and pressure concerned with the spatial
co-ordinate x; can be transformed into the form

Ui X, ) =ui(x;, 1), (10)
P(X;, t)=p(x;, ). (11

The co-ordinate X; is usually referred to as the Lagrangian co-ordinate. Using equations (10)
and (11), equations (3)(7) can be rewritten in the following form. The equations of motion and
continuity are

DU; 1 .
_Dt—X‘,+;P'i-_V(Ui’j+Uj‘i)'j=F£ m I”, (12)
Ui,i=0 in V, (13)
the boundary conditions on §; and S, are
U;=U; onS§;, (14)
1 .
<_;P5ij+v(Ui,j+Uj,i)>.Nj=Ti on Sz, (15)
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and the free surface condition is
DY
Dt |x,

where F; and N are body forces and the direction cosine of the outward normal on the boundary
in terms of the co-ordinate X; respectively. The position of the free surface is

Y(Xia t):n(xb t)’ (17)

where Y is the free surface position in terms of the co-ordinate X;. As the initial condition,
velocity and pressure are given as functions of the material co-ordinate X;:

U;=U2(X)), (18)
P=P°(X,), (19)

=0 on S, (16}

where U? and P° are velocity and pressure at time ¢ =0 respectively.

3. NUMERICAL APPROXIMATIONS

The total time T is divided into a number of short time increments At. Each time point is denoted
by n. Velocity and pressure at the nth time point can be defined as

P'=P(X},t"), 21

where X! denotes the Lagrangian co-ordinate at the nth time point. Velocity and pressure at the
(n+ Dth time point can be defined in the form

U?+1=U"(X?+1,tn+l), (22)
P"+1=P(X?+1, tn+1). (23)

The Lagrangian co-ordinate X7*' is expressed as
n+1__ n+1 n At n n+1
Xi =X >~ X; +'2—(U, +U, ) (24)

From equation (16) the free surface position can be obtained as
YXrL et =YX ). (25)

This means that the free surface position always takes the same value as a function of the
Lagrangian co-ordinate X ;. Namely, this fact expresses that the fluid particle on the free surface
always remains on the free surface. In a practical computation it is not necessary to take equation
(25) into account. In the Lagrangian treatment, using equations (20) and (22), the material
differentiation can be approximated in the form

DU; urtt-ur
Dt |x, At
Substituting equation (26) into equation (12), the equation of motion can be discretized into

Urti_gr 1
T‘—“—;P."f+1+v(Uf',j+ Uji).,+FL. (27)

(26)
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The equation of continuity is discretized as

Urtt=0. (28)
The boundary conditions corresponding to equations (14) and (15) are described by
Urt'=0U; on§S,, 29)
1 .
<‘—;Pn+légj+V(U?’}—1+U;‘;1 >.Nj=Ti on Sz‘ (30)

The analysis presented in this paper is to pursue the unknown variables U?*! and P"*! to satisfy
equations (27) and (28) with the boundary conditions (29) and (30) starting from the known
variables U} and P*.

For the discritization of the material function the finite element method is successfuily used.
The interpolations for velocity and pressure can be expressed as

Uiz(DaUaia (31)
P=0,P, (32)

where @, is the interpolation function and U,; and P, represent the nodal values at the ath node of
the finite element. The corresponding weighting functions are expressed in the form

Ur=0,U%, (33)
P*=d, P*. (34)

The correction potential ¢ and the corresponding weighting function will be intoduced and
interpolated as follows:

¢=(Da¢a’ (35)
P*r=0.0F. (36)

In the conventional analysis the mixed interpolation for velocity and pressure is usually used. In
contrast, this paper employs equations (31)—(36) as the interpolation equations. This can be done
because velocity and pressure can be computed employing the mutually independent equations.
The linear interpolation function based on the three-node triangular element for both velocity
and pressure is employed. The usual finite element procedure leads to the finite element equation.
The precise form will be described in the following sections.

4. NUMERICAL STUDIES

For numerical studies the propagation and deformation of a solitary wave in a rectangular
channel are calculated. If the stillwater depth is uniform, the solitary wave propagates without
deformation. Referring to this phenomenon, the reliability of the analysis can be investigated.
A solitary wave is essentially a wave that has infinite wavelength, but in this study the behaviour
in a channel of limited length is examined. The splashing of the solitary wave is also investigated
to the walls of both sides of the channel. The initial condition is assumed as Laitone’s first

approximation:*?
H
C=\/[gd (1+7>:|, 37
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H 3H
U=\/(gd)<z>sech2 [\/(ZF>(X—Ct)iI, (38)
3/2
V=\/(3gd)<—13> (%’)sechz[\/(%%)(X—Ct)]tanh[\/(%%)(X—Ct)} (39)
Ys=d+Hsech{\/(%%)(X—Ct)], (40)

P=pg(Ys— Y), (41)

where C, U, V, P and Y, denote wave velocity, velocities of directions X and Y, pressure and wave
height from the bottom respectively and g, d and H represent gravitational acceleration, water
depth and wave height of a solitary wave respectively. To examine the run-up height R of
a solitary wave on a vertical wall, an analytical approximation can be obtained by the following

equation;
H\ d{H\?
R=2d{—= |+={=} . 42
(2)+5(5) “@
To decide the channel length L, the following equation is used:
L d\?
—=269( —
7 9 ( H) 43)

The analysis domain is limited to the place where the wave height of the solitary wave is equal to
or less than H/1000. This value is determined considering the length of the analysis domain to be
effective for the solitary wave. Thus equation (42) is obtained by Laitone’s approximation
(Figure 2).

As numerical studies, two types of solitary wave are analysed. The dimensions and conditions
of the wave of Example 1 are given in Tables I and II. The initial condition is shown in Figure 3.
In this figure the scale of direction Y is 10 times larger than that of direction X. The figure shows
the finite element mesh, velocity vectors and pressure distribution. Example 2 is a wave which is
higher than that of Example 1. The dimensions and conditions of Example 2 are shown in Tables
II and I1I. The initial condition is shown in Figure 4. The scale of direction Y is four times larger
than that of direction X.

e

wall

channel bottom /
7

Figure 2. Solitary wave profile
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Table 1. Solitary wave Example I

Length of channel 300m
Stillwater depth 10m
Wave height 05m
Total number of nodal points 1089
Total number of elements 1920

AX 2:5m
AY 1-25m

Table II. Computational conditions of Examples 1 and 2

Time increment 0-01s
Density 1tm~3
Kinematic viscosity coefficient Om2s™?
Gravitational acceleration 9-8ms™?

Table III. Solitary wave Example 2

Length of channel 160 m
Still water depth 10m
Wave height 2m
Total number of nodal points 1161
Total number of elements 2048

AX 125m
AY 1-25m

5. METHOD A

5.1. Basic concept

The numerical analysis referred to as Method A (the velocity correction method) is described in
this section. By discretizing the equation of motion, the intermediate velocity can be obtained.
However, this velocity may not satisfy the equation of continuity. To correct the obtained
intermediate velocity, the correction potential is introduced. Using the equation of continuity, the
Poisson equation can be derived for the correction potential. To solve the resultant Poisson
equation, the correction velocity can be derived.

Referring to equation (27), the intermediate velocity U?*! is defined in the form

Tn+
grti_yz

1 n n n n
At =—I—)P,i+V(Ui,j+Uj.i),j+Fi- (44)

The intermediate velocity U?*! may not satisfy the equation of continuity. Thus velocity
U*! can be obtained by correcting the intermediate velocity U?*?! to satisfy the equation of
continuity. Taking the rotation on both sides of equations (27) and (44), the following relation can
be obtained:

rotUrtt=rotUr+!, 45)
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This equation means that
Un+1 Un+1+¢” (46)

where ¢ is a scalar which is referred to as the correction potential. Taking the divergence on both
sides of equation (46), it follows that

Ui =0t + ¢, 7

Substituting the equation of continuity (28) into equation {47), the equation for ¢ can be derived
as

¢,ii=*U~?Il~ (48)
Substituting equations (27) and {44) into equation {47), the equation of pressure can be expressed

as

Pn+1 Pn —_d) i (49)

Integrating equation (49) and defining the integral constant as zero, the equation for pressure is
described in the form

P +1 =pPr—
At (50)

The algorithm of Method A can be summarized as follows.

1. The intermediate velocity U?*? is calculated:

~ 1
UE'“=UE'——At<;P,"i—v(U§',,-+ U}',i),j—F,?'>. (51)
2. Correction potential ¢ is calculated:
¢,ii=—l71!‘,?1- (52)
3. Velocity U?*! is calculated:
Un+1 U"+1+¢ (53)
4. Pressure P"*! is calculated:
P + 1 Kl (}5 (54)

5. Urt! P"*! are replaced with U}*!,P" and proceed to the next time cycle.

5.2. Variational equations

To obtain the finite element equations, the variational forms should be derived. Equation (51) is
multiplied by the weighting function U¥ and integrated by parts over the domain V to give

‘[ (U (7;‘“)dV=f (UFrUndv
v 14

1
+A,<;j(uifipn)dV—vJ Uff(U§j+U7,i)dV+J (U?‘F?)dV+>:,—"), (55)
v 4 g
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1
zr:J U;*(—;P"'éij+v(U,~",,—+ U;,i))-des. (56)
S

Equation (52) is multiplied by the weighting function ¢ * and integrated by parts over the domain
V to give

L(qﬁf‘? ¢.)dV= L((ﬁ* Urthydv+ L(¢*¢,.~) "NidS. (57)

Equation (53) is multiplied by the weighting function U* and integrated by parts over the domain
V to give

J(U;“ U{'“)dV=J (U* U?*‘)dV+J (U¥ ¢ )dv. (58)
14 14 14

Equation (54) is multiplied by the weighting function P* and integrated by parts over the domain
V to give

J(P*P"“)dV=J (P*P")dV—ﬁj (P*)dV. (59)
v v At |y

On the basis of equations (55)—(59) the finite element method will be derived. As the natural
boundary conditions, several types of boundary conditions are included in the variational
equations. Therefore it is necessary to clarify the natural boundary conditions which can be
handled with these variational equations before the finite element equations are formulated.

5.3. Boundary conditions

The boundary conditions in Figure 5 can be explained as follows:

() Urt=U; onS§,, (60)
1 R

<——;Pn'5ij+V(U,!:j+U;",i)>'Nj=ti=0 on Sz; (61)

(ii) ¢, Ni=F; on §;, (62)

¢=¢  onSy; (63)

(iii) Urtt=U; onS;. (64)

Item (i) is the boundary condition associated with equation (51). Equation (60) means that the
intermediate velocity on the boundary is assumed to be the same as the boundary velocity.

Figure 5. Boundary condition
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Equation (61) expresses the fact that the surface force is zero on the free surface boundary.
Equation (61) can be considered as the natural boundary condition of equation (56). Item (ii) is
associated with equation (52). The boundary condition expressed by equation (62) can be imposed
as the natural boundary condition of equation (57). Normally #; is given as zero. This means that
the normal gradient of pressure must always be constant with respect to time. Equation (63) gives
the fundamental basis on which the pressure is measured. Thus normally function ¢ is given as
zero. Item (iii) is the boundary condition for the new velocity computed at the (n+ 1)th time point.

5.4. Finite element equations

The finite element equations can be derived in the following form from equations (55) and
(57)+59) using the interpolation function equations (31), (32) and (35) and the weighting function
equations (33), (34) and (36):

- 1

M;“JIU"+1 M;‘ﬂU}‘,i+At<;H;‘iﬁP§—vS,,ﬂ,UﬁJ+N"F;'l+ZZ},>, (65)

auﬂt ¢ﬁ' :ﬁ+:1 n+1 +Qn'+1 (66)
Mn+1 Un+1_Mn+1Un+1 :E;l ¢,B’ (67)
M:;1P3+1=M Pﬁ A n+1 d)ﬂ: (68)

where
Maﬂ=J ((I)a(D)dV’ Na:J‘ (q)m)dV’
|4 | 4

Saiﬂj:-[ (@« Dg)dV - 0;5+ f (D, ; Dy, )dV,
v v

Aaiﬁi=J (@, ; @p, )V, Haﬂizj (@, Dy, )dV, H,p=HE,
% v

Qal = J‘ ((Dafl)dsa 241!‘- = J‘ (Qlfl)ds’
s s

in which M,; means the lumped mass matrix obtained from the consistent matrix M,,. Super-
script n expresses the value at the nth time point. Superscript n of the matrix denotes the time
point at which the coefficient matrix is computed. Using the Lagrangian finite element method,
the element form changes at each time point, because the domain to be analysed changes in time.
Thus the coefficient matrix should be reformulated at each time point. The co-ordinate at the
(n+ 1)th time point is originally unknown but can be calculated using iteration.

5.5. Algorithm

The algorithm of the Lagrangian finite element method using Method A can be expressed in
the following form

(a) Set m=0 and U!* 1 is assigned as U?.
(b) The co-ordinates of the nodal points X {'* 1m are calculated:

Xn+1(m) Xn (Ulp+l(m)+ U,") (69)
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(c) The intermediate velocity U?* ! is calculated:

M2 O = M2, Ui+ At(%H:ng—vs:fg,- 5+ No F:i+izi>. (70)
(d) Correction potential ¢ is calculated:
Algd dp=HIG OB Qo (71)
(e) Velocity Urttm*1 is calculated:
M U s D < MoF O3+ Hig gy (72)

(f) Pressure P"*1m*1) i5 calculated:
M:;lp;+1(m+1) nﬂPﬂ A Mn+1¢ﬂ (73)

(g) If|UpHitm+ e+ 1m{ ¢ is not satisfied, then m=m+1 and return to step (b).
(h) Up*itm*  prtlm* D are replaced with U?, P" and proceed to the next iteration cycle.

The number of iterations within one time point is denoted by (m).

5.6. Numerical study

Figure 6 shows the finite element mesh representing the solitary wave propagation, the
computed velocity and pressure at the times when the run-up height of a solitary wave on a right
wall becomes maximum, when the wave returns to the centred position, when the run-up height
of a solitary wave on a left wall becomes maximum and when the wave returns to the centred
position again. The final computed results should be coincident with the initial configuration
because the viscosity is neglected in this computation. Identical results have been obtained, which
shows that the algorithm of Method A is adaptabie to the analysis of free surface flows such as
solitary wave propagation.

6. METHOD B

6.1. Basic concept

The numerical analysis referred to as Method B (the velocity correction method) is described in
this section. Let separate the discretized equation of motion into two parts, the terms of velocity
and pressure. The quantity which can be computed by the equation of motion dropping the
pressure term is referred to as the intermediate velocity in this section. The intermediate velocity
would not satisfy the equation of continuity. Therefore the pressure equation can be derived so as
to satisly the equation of continuity.

The equation of motion can be split into two terms as

Urtl=Ur"1+AU,, (74)
where U*1 is referred to as the intermediate velocity and is defined in the form
U"“—U"+At[v(U,"J+U i)+ FI]. (75)

The physical meaning of the intermediate velocity is not clear. The correction velocity AU; can be
determined by the pressure term as

AUi=U?+1-U,."+1=-fP§“. (76)
o
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Thus equation (74) can be rewritten as
~ At
U{'“zU{‘“-«—p I A 77

Taking the divergence on both sides of equation (77) and substituting that equation into the
equation of continuity (28), the pressure Poisson equation can be obtained as

Pt =L Opt. (78)
The algorithm of Method B can be summarized as follows.
1. The intermediate velocity U?*! is calculated:
Urti=Ur+At[v(Us;+ UL, ;+ FF]. (79)

2. Pressure P**! is calculated:

prt=L g, 80
, ALt (80)
3. Velocity Ur*! is calculated:
~ At
Ut =0t -ipn @1)

4, U1 is replaced with U? and proceed to the next time cycle.

6.2. Variational equations
To obtain the finite element equations, the variational forms should be derived. Equation (79) is
multiplied by the weighting function U and integrated by parts over the domain V to give

L (U0 Hdy = L (UF U{‘)dV—At(v J; U¥;(Ut;4+ Uz )dV — JV(U,* Fhd V—Z?) , (82)

zr=j UFDv(U?,+UL)] N;dS. (83)
N

Equation (80) is multiplied by the weighting function P* and integrated over the domain V to
give
p

j (P,"}P,",-“)dV=———J‘ (P*U:{T’)dV+J‘ (P*P"*1)- N, dS. (84)
v At )y 5

Equation (81) is multiplied by the weighting function U¥ and integrated by parts over the
domain V to give

f(UrU?+1)dV=J (U;*Uz'“)dwé—tj (U PV (85)
v v P Jv

On the basis of equations (82)-(85) the finite element method will be derived. As the natural
boundary conditions, several conditions can be considered in the variational equations. Therefore
it is necessary to clarify the natural boundary conditions which can be handled with these
variational equations before the finite element equations are formulated.
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6.3. Boundary conditions

The boundary conditions in Figure 7 can be explained as follows:

(i) U+ Ut )] N;=(;=0 on §,; (86)
(if) PirLN = on S,, 87

Prtl=p on S,; (88)
(iii) Urtt=0U; onS§,. (89)

Item (i) is the boundary condition associated with equation (79). It is important that no part of the
intermediate velocity should be specified, because the intermediate velocity is not the actual
velocity. If the boundary condition for the specified velocity was imposed on equation (79), the
computation would be divergent. Equation (79) is the explicit form; therefore the computation
can be carried out without any specified intermediate velocity boundary condition. Equation (86)
corresponds to the free surface boundary condition with equation (88). Equation (87) should be
discussed more precisely. The following four cases were carried out in our numerical experiments.
For each boundary S, _, and §, _, shown in Figure 7 the boundary condition must be imposed
separately:

aPn+1 6Pn+1

15 =0 onS;_y,8;-2; (90)
on ot
aPn+l 6Pn+1
(2> Em =0 and pm =f;, (##0) onS,_q, 91)
8P"“ aPn+1
an =f2 (fz #0) and 3 =0 on 81_2; (92)
T
3> PnH:P=PQh onS;-1, S1-2; (93)
6 n+1 aPn+1
{4> I;n =0 and =pg onS,_,, (94)
6P"+1 aPn+1
n =pg and . =0 onS,_,. 95)

S

le
e A

S1-2

Figure 7. Boundary condition
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Case (1) means that the pressure gradients both normal and tangential to the wall are equal to
zero. Case (2) expresses that the pressure gradient in the normal direction on the boundary
S, -1 and in the tangential direction on the boundary S, _, are equal to zero. The two equations
for ry and r, can be derived as follows. Separating the equation of motion into normal and
tangential directions, we obtain

opP ou,
%=_p( 6: _V(Un,j+Uj,n).j—Fn)’ (96)
opP ou,
6T=—p( 6 V(Ur,j+Uj,r),j_Ft)a (97)

where it is found that the second and third terms of the right-hand sides are the parts of the
intermediate velocity:

n+ 1 Un
Ur,+U} Fl=—rvw— 98
W2+ U3+ = 08)
Using the intermediate velocity, the following expressions can be obtained:

aPn+1 U;H—l—U:l ﬁ:+1_U;t U;l+1____U:|+1
T ‘””( At A )—p At ©9)

8Pn+1 Ux+1_U'r: 0"7:+1_U: ﬁ:+1_U:+l
"= 0 =_"< AL At )"’ At (100

In equations (99) and (100), putting r; =r, =0, the boundary conditions can be converted to those
of the intermediate velocity:

Un+1 Un+1 (101)
U:,'“=U§,'“. (102)

Case (3) is the Dirichlet condition that pressure is specified on the boundaries S, and S; _,.
Case (4) expresses that the pressure gradients tangential to the boundary S, _; and normal to the
boundary S, _, are given. The free surface problem is analysed using these four cases of the
boundary conditions. In computations by the authors’ group, numerical results have been
obtained only using the condition in case (4) for solitary wave propagation. This problem is the
vertical two-dimensional problem including the gravitational effect. Thus the condition in case
(4> seems useful. However, in the case of cavity flow the condition in case {2) would be useful.

6.4. Finite element equations

The finite element equations can be derived in the following form from equations (82), (84) and
(85) using the interpolation function equations (31) and (32) and the weighting function equations
(33) and (34):

M"“U’l+l M;,U%— At(vSZip; Ej—N:FQ,-—izi), (103)

A:i;ll Pn+ 1 At H:;; 1 Un+ 1 Q:i+ 1 , (104)

~ At
Mn+1Un+1 M:E—l Usi+1——H:ét1Pn+l, (105)
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where
.

Maﬂ= ((Daq)ﬁ)dVa Nazf ((I)a)dVa
Vv 14

~

Suigi= ] (@1 Dp )dV* 5;‘;'*‘[ (@, ; P4, :)dV,
v v

Aaipi= ((Da.iq)ﬁ,i)dV’ Haﬂi=f ((Dad)ﬂ,i)dV’
v v

Qui=j (®.F;)dS, 2ai ‘—‘J ((I)afi)ds>
N N
in which M,; means the lumped mass matrix obtained from the consistent matrix M.

6.5. Algorithm

The algorithm of the Lagrangian finite element method using Method B can be expressed in the
following form.

(@) Set m=0 and U1 is assigned as U?.
(b) The co-ordinates of the nodal points X* 1™ are calculated:

A
X;'“""’=X;'+—2t- (Ur+tm 4 U, (106)

(c) The intermediate velocity U?*! is calculated:
Mg US = Mo Ul — At(vShp U — NIF%—E2). (107)

(d) Pressure P"*1™*1 jg calculated:
Azt Pt D = L O O (108)

(e) Velocity Ur*m*1 jg calculated:
Mz;—l U§i+ “’"“’=J\7IZ,,+ 1 ﬁ;:—l _%H:ﬂj‘:lpzﬁ- Lm+1) (109)

(f) |urttm+H_yr+im| e is not satisfied, then m=m+1 and return to step (b).
(g) Urrt*1 s replaced with U?, and proceed to the next iteration cycle.

The number of iterations within one time point is denoted by (m).

6.6. Numerical study

Figure 8 shows the finite element mesh representing the solitary wave propagation, the
computed velocity and pressure at the times when the run-up height of a solitary wave on a right
wall becomes maximum, when the wave returns to the centred position, when the run-up height
of a solitary wave on a left wall becomes maximum and when the wave returns to the centred
position again. The final computed results should be coincident with the initial configuration
because the viscosity is neglected in this computation. Identical results have been obtained, which
shows that the algorithm of Method B is adaptable to the analysis of free surface flows such as
solitary wave propagation.
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7. METHOD C

7.1. Basic concept

The numerical analysis referred to as Method C is described in this section. The previous two
methods employed the intermediate velocity to derive the pressure Poisson equation. In contrast,
Method C derives the pressure equation directly from the equation of motion. Moreover, the free
surface condition of Method B is not sufficiently clear. To overcome the free surface condition, the
equations of Method C are derived from the equations of motion and continuity in a direct
manner. The pressure Poisson equation is derived from the following process.

Taking the divergence on both sides of equation (27), the following equation can be obtained:

n+1l n
Ui,i _Ui,i_ 1

ac - UL Ui+ L (110)
Substituting equation (28) into equation (110) leads to
U?,x' ! nt1 n n n
__A_t_z—;P,ii +V(Ui,j+Uj,i)’ij+F,‘,,‘. (111)

Rearranging the terms, the pressure Poisson equation can be obtained:

Plt' =L ULt W(UL5+ Up).+ pF. (112

Referring to equation (27), velocity UP*? is derived as follows:
1
U{‘*‘zU{'—At(;P{'ﬁ+1~v(U§{j+ Uj?,i),j—FE'). (113)

The algorithm of Method C can be summarized as follows.

1. Pressure P"*! is calculated:

Prit= ULt UL+ US ) s+ p Pl (114

2. Velocity U?*! is calculated:
1
U{l+1=U?—At<;P:‘i+1—‘V(U?’j+U;‘,i),j_Flrl)- (115)
3. Ur*!is replaced with U? and proceed to the next iteration cycle.

7.2. Variational equations

To obtain the finite element equations, the variational forms should be derived. Equation (114)
is multiplied by the weighting function P* and integrated by parts over the domain V to give

J (P%PrthdV= ——Ap—t(P* U{‘,,-)dV+uJ‘ PXUT ;+ U}',i),jdV+pJ (PXFHAV+Qr+t,  (116)
v 14 v

Q?“=J (P*Pf'i“)'NidS—pLP*(UE',,-+ U}',i),j'NidS—pJ (P*F})-N;dS. (117)
5 s

The pressure gradient P! -N; is expressed by the following equation where the Navier-Stokes
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equation is multiplied by the direction cosines of the outward normal on the boundary:

Urti_yr
P A

Substituting equation (118) into equation (117) leads to

P,"i+1’Ni=—< —ﬂ(U?,j'*'U;".i),j—PF?)'Ni- (118)

Up+1_Ugl
QE'+1=—LP*(I)'A—t'—N(Uﬂj+U}',f),j—PF?>'NidS
—gJP* (U{‘,;+U}',i),}-~NidS—pf(P*F?)-NidS. (119)
N s
Only the first term of equation (119) remains and it is obtained that

ntl_ n
Q?+1=~ij*<—u£)'NidS. (120)
s At

Using a linear interpolation function, the second term of the right-hand side of equation (116) is
dropped:

J (PﬁP,"i*l):—ﬁJ (P* U,?',i)dV+pJ (PXFHav+Qr+t. (121)
v At )y v

Equation (115) is multiplied by the weighting function U} and integrated by parts over the
domain ¥ to give ’ ‘

1
J(U?U?*‘)dV=j (U,-*U{')dV—&-At(—f(U:f,—P"“)dV—vf UrUr+U)AV
v v pPJv v
+j (U.-*F?)dV+>:.f‘), (122)
14
1

z;*:f U;"<——;P”“-5ij+v(Uﬁj+U£i)>-deS, (123)

S

7.3. Boundary conditions

The boundary conditions in Figure 9 can be explained as follows:

Urti_yr
(i) Q{‘“=—pf P*('——)-Nids=f,~ onS,, (124)
s At
P"*1=P onS,; (125)
1 52 N

S

Figure 9. Boundary condition
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(ii) Urtt=0; onS$,, (126)
1 R
<‘-‘;Pn+1'5ij+V(U?,j+U;,i))'Nj=ti=0 on SZ‘ (127)

Item (i) is the boundary condition for the pressure Poisson equation (114). Referring to equation
(124), the velocity at the (n+ 1)th time point, U?*!, is required to compute the term QF*1.
Generally, U”*! is an unknown variable. However, in the computation of the rectangular channel
shown in Figure 9 the term QF*! can be computed as zero, because the product Ur*!- N, is
always zero. Item (ii) is the boundary condition for equation (115).

7.4. Finite element equations

The finite element equations can be derived in the following form from equations (121) and
(122) using the interpolation function equations (31) and (32) and the weighting function
equations (33) and (34):

A:i;i1P§+1=—£; :ﬂiU§i+PN:iF:i+Q?H, (128)
- _ 1 -
M:E'lU;i'f-l =M:ﬂU;}li+At<’{;H:i-§1PZ+l —VS:iij;;j"}‘N:F:i +Z;’i>, (129)
where
M,B=J (D, D4)dV, N,=J (®,)dV, Nﬂ:j (D, )dV,
v 14 v

Saiﬁj=J (‘I)a,kq)p,k)dV’éij'i'f (®,,; Dy, ))dV,

14 v

Aaiﬂi=‘[ ((Da,iq)ﬁ,i)dV, Hmﬂizf ((Daq)ﬂ,i)dVa leiﬁ=HaTBi7
14 v

Qai =J (q)afi)dsa 2ai =J ((I)afi)dsa
N S
in which M,; means the lumped mass matrix obtained from the consistent matrix M.

7.5. Algorithm

The algorithm of the Lagrangian finite element method using Method C can be expressed in
the following forms:

(@) Set m=0 and U**® is assigned as U?.
(b} The co-ordinates of the nodal points X7 1™ are calculated:

At
XpOim = X4+ SUF 4 U). (130)
{(c) Pressure P**1*1 jg calculated:

A:.-;&Pz““'*“=—z”; n5US+ pNEF2 4 Qe (131)
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(d) Velocity Ur*m* Y g calculated:

— _ 1 -

M;‘;l U;{”("‘*P”: :,,U;i+At(;H;’i§1Pz+1<m+1)—vSﬁ;KjUEj-'rN:F;‘;-i-E;’,-). (132)
() If [UpH1m* D _ypr+im| < ¢ is not satisfied, then m=m+1 and return to step (b).

(f) Upr*m*1 s replaced with U? and proceed to the next iteration cycle.

The number of iterations within one time point is denoted by (m).

7.6. Numerical study

Figure 10 shows the finite element mesh representing the solitary wave propagation, the
computed velocity and pressure at the times when the run-up height of a solitary wave on a right
wall becomes maximum, when the wave returns to the centred position, when the run-up height
of a solitary wave on a left wall becomes maximum and when the wave returns to the centred
position again. The final computed results should be coincident with the initial configuration
because the viscosity is neglected in this computation. Identical results have been obtained, which
shows that the algorithm of Method C is adaptable to the analysis of free surface flows such as
solitary wave propagation.

8. METHOD D

8.1. Basic concept

The numerical analysis referred to as Method D is described in this section. To compute the
term QF*! on the left-hand side of equation (120), it is necessary to know the velocity at the
(n+ Dth time point. At the time of computing P"*!, velocity U?*! is not yet known. Therefore
iteration is required. The formulation of Method D is the same as that of Method C except for the
introduction of iteration. The basic concept can be written as follows.

1 Set m=0 and pressure P"* 1™ is calculated:
Pr ) =2 UL+ p(UF 1+ Up) i+ p . (133)
2. Velocity UF* ™ is calculated:
upiem—ur —Ar(%P."ﬁ“'m —v(UI;+ U;-',.-),,-—F.-">- (134)
3. Pressure P"*1m*1 5 calculated:
PR D = B UL p(UES ™+ USE) 4 p P (139)
4 Velocity Ur**™* 1) s calculated:
uprtme =yr —At<%P,"iH(m+“ — (UL + U}',Tl("')),j‘F?H) (136)

5. If |uptim* D _yrtim) ¢ is not satisfied, then m=m+ 1 and return to step 3.
6. Urtim+ 1 js replaced with U? and proceed to the next iteration cycle.



M. HAYASHI, K. HATANAKA AND M. KAWAHARA

830

uonsod 123us0 BY) 03 suIMIAI JaRM BTT,

L}
sa-ost oozl 0008 00D2  oO-Of o osve  bo-os- 0006~  00°021~ 00 0S1-
NOTLNEIYLSIO 3IYNSS3Yd 914

G Uy

0-us [0-08

aoe J’l}j{\\l\\l‘l‘\l\f‘]u 08
e ——— g
T —— e ———————=—— g
oos T e ———— e ———————————————————5 55
oy e———
0-0¢ “0€
o2 ———"" ———— T2
o if————— e ———a I
a0 — —— g g

C (S/W) 0T + -—— ) SHOLJIIA ALI3DI3A 914

\\\VV\\.;RA..’é%///V////////ﬁ.:.::: S T Y
i N ————

ViamsssssssseanssssssacarsmttttB N it e, ST

.:,..::::1:.::.::t\\\\\\\\\\\\\\\\\\\\\\\\\\ ///////////////////5_ LA e
e

NOISIAIQ HS3aW 214

¢ $862 = dags

(998) $8°6g = ommy

TWNWXRW $8W039q [[em 14811 ® wo 448y dn-unt aqy,

3
na-psi oD -DZ1 0o 06 oe -ge 00 -0¢ 00 -¢ 00 -DE- 0008~ ©CC-06-  03-D21-  00:0SI-
¢ s > L : L ) L v v : L deamd : . L . L ’

NOILNGIMLISIO 3ENSS3Hd -914d

TooT
0-00i 06
aes g
a-cg o
0-0s L s
00s .
0o o
0-0e w2
002 "
a-gt a0
00
L S/KW) 01 ¢ —— )} SHOLJ3A A1120713A 914
Temam vevros TP
e P e SAALLALAL [T ORI
LA AA AR AR 4497 VTV YR raa, AR A ST R iy aaan
st P ATV VTR bkt S ST b
AR T Y YNk bt TV L T e b
W RPRPRITIT
O VIO Lt R I T T P
Yy £y aaaanaadARsAAA44T
s - IR i YT i
o v psanssanasanssnins”
%

NOISIAIGQ HS3W 914

A e A
\%%E%EEEEEgg%sé

WA

(095) 1671 = oum ¢ 16pT = dogs



831

FREE SURFACE NAVIER-STOKES FLOW

D POmdIN Aq 3nsax paindwio)) 0] 21nJry

uorytsod 19)Us) 9Y) 0} SUINDI dABM YT,

00-081 00-02( 0006 D009 00°OE a_ocw 00-0e-  00-03-  00°GE- 00-02i- 00 °OSI-

NOILNGIYLSIO IENSS3dd 914

AR TUTT

Q-6 a“06
a-a8 o -04
¢ oL 0 "0¢
o8 008
008 o-0s
o-ov lo-ay
008 o -0¢
02 00z
aat lo-at
0-e 070

( (S/W) 0T ¢ —— ) SHOL33A ALIJQT3A -9I3

.:::.:::.:.v:.:.:‘:‘\t\\\\\\&\\k\\ﬁ s

L

O [ RN TP PRV PON |

T —
S, »
\\\\\\\\\.t\ /////ﬂ//// ///////////55:::,::.::,.:,:.:. I

//«//,///////////////////ﬁn:,: [ETTTITTTERTRTPIRION

Az

__....5....,.......,s;s\\\\\\\\\\\\\\\\\\\\\\\\r

A

EEE%E‘%E% E: ] %

mwgmﬁ%ﬁmmﬁ%‘m%%% %
AN

e i

¢ gogg = dogs

@%

E

(935) £9'6 = °mn

TNWIKRW SIWOIA( [[esm 4J9] & U0 JySoy dn-umr oy,

co-ost 0002l 0006 00 09 60 -0 c~nz.uu 00°0e-  00°09-  00-D6- 00°021- DO -OS[-
. L P TN R Y bt L L s PP S
NDILNAIYLSIO 3°¥NSS3dd 914
Lt

008 0¢1
a-ag 08
0-0L a-qe
009 0-aL
0°0s ‘09
007 ‘08
008 In -0¥
[ R4 *0¢
001 ‘02
90 001
a-¢

( (S/W) 0T * -— ) SHOLJ3IA AL13073A '914

| VTP R TR T o S SOV AT [ 2L ST TR T O

Anreryres, "

aea AL TV Y Y s, "
i At o .

AAq4ataar SEMLLAN M AARRS ALY

ARt S ANV VYOI PP b sbur PR IPITVY "
T Y]

TR AR LAR sarana Fa)

T e et AL AL LIS
L STTIINY
AMEAA LR,
-

AR AS RIS T P b b aaaa s g S O e b
(LN
LYIIV
TYYYIV

e S

NOISIAIQ HS3IW 914

IR
| _gE&Eg%g%ﬁ%gg

i,
i Eﬁ

==
=t

i \z\zgzz L

et

_\z»_s;%% ,_,,_, i
bl égmg é,

NN AN %%é% i
_EsggEé%gE%g%%é%%%

(08s) gL'3p = ouwny ¢ eLyy = dets



832 M. HAYASHI, K. HATANAKA AND M. KAWAHARA

8.2. Boundary conditions

The boundary conditions in Figure 11 can be explained as follows:

vt -ur
) Qi =—pJ P*(—U—>-NidS=f,- on S, (137)
P"*1=P onS,; (138)
(ii) Urtt=U; onS$,, (139)
1 R
<—;P"+1'5ij+V(U{i}—l+U;j1 >.Nj=ti=0 on SZ' (140)

Item (i) is the boundary condition for the pressure Poisson equation. Item (ii) is the boundary
condition for equation (136). This free surface boundary condition must be evaluated at the
(n+ 1)th time step essentially. Using the iterative method, this objective can be attained.

8.3. Algorithm

The algorithm of the Lagrangian finite element method using Method D can be expressed
using the notations given in equations (128) and (129).

(@) Set m=0 and U!*1© is assigned as U7.
(b) The co-ordinates of the nodal points X?* ™ are calculated:

X;'“(""=X{‘+%(U{'”(""+ u). (141)
(c) Pressure P**1% is calculated:
A P;,'“('”’=—A%H;',,,- Up+pNLF?. (142)
(d) Velocity Ur*1™ is calculated:
M;’; LU’ Lom) — M:ﬁU§i+ At(fl—)H;'i}; b Ym) —yShisi Usi+ N;‘F:i-f-f:i) . (143)
(¢) The co-ordinates of the nodal points X?*1¢* 1 are calculated:

At
X?+1(m+1)=X?+?(U;|+1(M)+ U:‘)‘ (144)

Figure 11. Boundary condition
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(f) Pressure P**10* 1 i5 calculated:

Azt PR = — R HI U NI P Q0 (145)

(g) Velocity Ur*1tm*1 g calculated:

M Uit = M, U
1 .
+At<;H;‘f,§1P§+1("‘“’—vS;‘i}}U,',‘f"'"’+N;‘“F;'i“+Z:,-“>. (146)

(h) If|jurtiem*h_pyptim) < is not satisfied, then m=m+1 and return to step (e).
(i) Urttm*1 s replaced with U? and proceed to the next iteration cycle.

The number of iterations within one time point is denoted by (m).

8.4. Numerical study

Figure 12 shows the finite element mesh representing the solitary wave propagation, the
computed velocity and pressure at the times when the run-up height of a solitary wave on a right
wall becomes maximum, when the wave returns to the centred position, when the run-up height
of a solitary wave on a left wall becomes maximum and when the wave returns to the centred
position again. The final computed results should be coincident with the initial configuration
because the viscosity is neglected in this computation. Identical results have been obtained, which
shows that the algorithm of Method D is adaptable to the analysis of free surface flows such as
solitary wave propagation.

9. COMPARISON OF METHODS OF SOLUTION

The run-up height is calculated and compared with the analytical solution. The arrival time at
which the wave will have the maximum value is calculated by equations (37) and (42). The wave
height is computed by equation (40) and the computed error is evaluated as

g _IR—Re|
R

x 100%, (147)
where R is the analytical solution and R is the calculated run-up height. Tables IV-VII show the
comparison of the wave height and the arrival time at the times when the wave runs up on the
right wall, when the wave returns to the centre position, when the wave runs up on the left wall
and when the wave returns to the centre position. The ratio of the computed value to the
analytical value is also represented. All values show good agreement. The ratio of wave height to
water depth for Example 1 is rather small. The deformation of the wave is moderate. Therefore

the distortion of the mesh is insignificant. The analysis can be continued without the rezoning
technique.

10. DISCUSSION

As stated in Section 3, the purpose of the present paper is to investigate the solution method of
unknown variables U!*! and P"*! satisfying the differential equations (27) and (28) with
boundary condition equations (29) and (30) starting from the known variables U” and P". To
obtain a stable computation, the fractional step method employs the fact that the equation of
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Table IV. Comparison at the time when the wave runs up on the right wall

Method Wave height (m) Arrival time (s) E (%)
A 1-0264 1491 1-37
B 1-0263 1491 1-36
C 1-0261 1491 1-34
D 1-0261 1491 1-34
Analytical 1-0125 1479 —

Table V. Comparison at the time when the wave returns to the centre position

Method Wave height (m) Arrival time (s) E (%)
A 0-5022 29-82 0-44
B 0-5014 29-84 0-28
C 0-5013 29-84 0-26
D 0-5014 29-84 028
Analytical 0-5000 29-57 —

Table VI. Comparison at the time when the wave runs up on the left wall

Method Wave height (m) Arrival time (s) E (%)
A 1-0262 44-73 1-35
B 1-0244 44-73 1-18
C 1-:0240 44-73 1-14
D 10237 44-72 1-11
Analytical 1-0125 4436 _

Table VII. Comparison at the time when the wave returns to the centre position

Method Wave height (m) Arrival time (s) E (%)
A 05026 59-52 0-52
B 0-5012 59-53 0-24
C 0-5008 5953 016
D 0-5009 59-53 018
Analytical 0-5000 59-15 —

motion is differentiated with respect to co-ordinates to consider the equation of continuity. Thus,
to correlate the resultant equations with the original equations, new boundary conditions must be
introduced.

In Method A pressure is computed from equation (50), which is derived from equation (49) with
the integral constant considered zero. Multiplying equation (49) by unit normal N; and using the
equation

¢,i’Ni=f=0 on Sl (148)
leads to the following form:

pPrri-N;=P"%-N; onS§,. (149)
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This means that the normal gradient of pressure on the boundary S,, 6P/0N;, at the (n+ 1)th time
point should be coincident with 0P/dN; at the nth time point on the boundary S;. Thus it is seen
that Method A is only valid if equation (149) is always valid on the boundary S;. Considering the
solitary wave problem, equation (149) is valid.

In Method B the boundary condition for pressure is not very clear. In the authors’ numerical
computations, equations (94) and (95) were used. The computed results were in good agreement
with the analytical solution. However, this condition can be used only for the solitary wave
propagation problem and is not adaptable to the more general problem. Moreover, Method
B employs equations (86) and (88) as the boundary condition for the equation of motion on the
free surface boundary. These equations are not exact in describing the boundary condition
equation (6) on the free surface. Thus Method B is not always suitable for general numerical
computation in spite of the fact that the computation is stable.

In Method C the boundary condition for the free surface is

l "
<—;P"“ <O+ v(UL;+ U;{,-))~Nj=t,»=0 on Sy; (150)
but precisely, this condition should be
1 .
<—;P"+1'5U+V(U?,}-1+U;jl )'Nj:ti=0 on S2. (151)

To introduce the boundary condition equation (151), the iteration method must be introduced.
This is the reason why Method D is employed. From the authors’ numerical computations, there
is no difference between the resuits by Method C and those by Method D. Therefore it is
concluded that Method C is the most recommendable for fluid flow analysis by the fractional step
method.

To pursue the limitation of the present Lagrangian method, Example 2 is analysed employing
Method C. The dimensions and conditions of the solitary wave in Example 2 are represented in
Tables II and IIl. Figure 13 shows the computed result at the time when the run-up height of
a solitary wave on a right wall becomes maximum. A comparison for Example 2 is given in Table
VIIL The computed wave height at the time when the wave runs up on the right wall and the
arrival time are represented. The computations were terminated because of the extreme distortion
of the finite element mesh. Looking at Figure 14, unexpected velocity distributions are computed.
The computation was tried using a shorter time increment but there was no improvement. Thus
in cases where the ratio of the wave height to the water depth, «, is large, the rezoning technique
should be introduced. In example 1 we used «=005 and in Example 2, «=0-2. Therefore
computation by the Lagrangian description could be useful with « less than 0-2 for solitary wave
propagation.

11. CONCLUSIONS
The results of this paper can be summarized as follows.

1. A finite element method based on the Lagrangian description has been presented to solve
unsteady viscous fluid flow with a moving free surface. The Lagrangian method is suitable
to pursue the free surface position because the nodal points of the flow ficld always move
with the fluid.

2. To solve the finite element equation, the fractional step method has been used. The
advantage of this method is to be able to use the same interpolation function for both
velocity and pressure. This simplifies the computation.
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Figure 13. Computed result when the run-up height on a right wall becomes maximum by Method C

Table VIII. Comparison at the time when the wave runs up on the right wall

Method Wave height {m) Arrival time (s) E (%)

C 4-4859 770 681
Analytical 4-2000 7-38 —
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Figure 14. The calculation is divergent

3. Four variations of the fractional step method are presented and compared with each other.
It is concluded that Method C is recommendable for practical computations.

4. The fractional step methods previously presented by the authors’ group are effective, but
attention must be paid to how to impose the boundary condition, especially for the
condition of pressure.

5. To solve solitary wave propagation with moderate wave height, the Lagrangian method is
suitable, but to solve the high-wave propagation problem, an improvement such as the
arbitrary Lagrangian-Eulerian method must be introduced.
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