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LAGRANGIAN FINITE ELEMENT METHOD FOR 

FRACTIONAL STEP METHODS 
FREE SURFACE NAVIER-STOKES FLOW USING 
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Department of Civil Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo, Japan 

SUMMARY 
This paper presents a finite element analysis based on the Lagrangian description for unsteady incompress- 
ible viscous fluid flow with a free surface. The behaviour of the fluid is expressed by the unsteady 
Navier-Stokes equation. For numerical integration in time the fractional step method is used. This method 
is useful because one can use the same linear interpolation functions for both velocity and pressure. In this 
paper, four variations of the fractional step method are presented and the numerical results are compared. 
To confirm the effectiveness of these methods, solitary wave propagation is analysed. 
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1. INTRODUCTION 

The analysis of unsteady incompressible viscous fluid flow with a free surface is of practical 
importance in the field of engineering. In this analysis, velocity and pressure should be determined 
considering the free surface. The position of the free surface is also unknown. Moreover, the 
boundary condition on the free surface is expressed by a complicated non-linear equation. 
Therefore the free surface flow is one of the most difficult problems to be solved by the numerical 
method. The problem is usually analysed on the basis of the Eulerian description, but it is rather 
inconvenient to express the complicated free surface configuration. Thus this paper uses the 
method based on the Lagrangian description. Employing the Lagrangian description, all finite 
elements in the analysis domain will move with the fluid. This fact considerably simplifies the 
treatment of the movement of the free surface boundary, which is varying in time. 

The basic equation of the present method is the unsteady Navier-Stokes equation. For 
numerical integration in time the fractional step method is employed. In general, to solve the 
unsteady Navier-Stokes equation using the finite element method, the polynomial interpolation 
of velocity must be one order higher than that of pressure. This is usually called mixed 
interpolation. However, if mixed interpolation is used, the formulation itself, the computer 
programme and the preparation of the input data are quite complicated. In contrast to this, the 
linear interpolation function of the same order can be used for both velocity and pressure in the 
analysis of the fractional step method. Thus this method makes the computational scheme 
extremely simple. 

The fractional step method is classified as one of the semi-implicit schemes. The unsteady 
Navier-Stokes equation can be transformed into a form in which velocity and pressure can be 
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computed in an independent manner, i.e. velocity is computed by the explicit scheme and pressure 
is obtained by the implicit scheme using the resultant velocity. For the interpolation function the 
three-node triangular element is employed for both velocity and pressure. The velocity correction 
method is one of the fractional step methods. The basic idea of this method was originally 
presented by Chorin' for the finite difference method. Donea et al.7233 Schneider and co- 
worker~ ,~ ,  Glowinsky et a1.,6 Mizukami and Tsuchiya7 and Kawahara and Ohmiya* have 
adopted a similar approach to the Eulerian description of the Navier-Stokes equation in the case 
of the finite element method. In this paper the velocity correction method for the Lagrangian 
equation system is presented and is called Method A. Ramaswamy and c o - w ~ r k e r s ~ ~ ' ~  and 
Kawahara and Anjyu" have presented the Lagrangian finite element method. An improved 
method of this type, called Method B, is used in this paper. There are several problems with the 
boundary condition in these two methods. Thus two other methods, Methods C and D, are also 
presented in this paper. Method D employs the iteration based on Method C,  but numerical 
experiments performed by the authors' group show that the numerical computation by Method 
C is more effective in practice. Moreover, Ramaswamy and KawaharaI2 have presented the 
arbitrary Lagrangian-Eulerian (ALE) finite element method. The ALE technique is suitable for 
the computation of highly non-linear problems, but this requires a large amount of computa- 
tional time. Thus the Lagrangian method is more recommendable from the computational point 
of view. To validate these methods, solitary wave propagation has been analysed. Using the 
numerical experiments, the efficiency of the methods presented in this paper is discussed and 
compared. 

2. BASIC EQUATIONS 

Throughout this paper the equations are described using indicia1 notation and the summation 
convention for repeated indices. Two-dimensional unsteady incompressible viscous flow is dealt 
with, which is expressed by the unsteady Navier-Stokes equation. Let V be the fluid domain 
surrounded by a piecewise smooth boundary S. 

The basic equations can be expressed using the fixed Cartesian co-ordinate system x i  shown in 
Figure 1. This co-ordinate system is usually referred to as the Eulerian co-ordinate system. The 
velocity and pressure fields are defined as functions of the spatial co-ordinate x i :  

ui = U i ( X i ,  t ) ,  (1) 

Spatial domain 

Figure 1. Co-ordinate system 
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The equation of motion Ean be written as 

where p, v and f;. denote fluid density, kinematic viscosity coefficient and body forces respectively. 
A subscript comma ‘,i’ denotes differentiation with respect to co-ordinate xi, while (D/Dt)lXi 
means differentiation with respect to time t on the condition that co-ordinate xi is fixed. The 
equation of continuity is 

The boundary S consists of two types of boundaries: one is the boundary S, on which velocity 
is given; the other is the boundary S2 on which the surface force is specified. The boundary 
conditions for the basic equations can be expressed in the form 

w ~ , ~ = O  in V. (4) 

ui=lii on S1, (5 )  

where the superscript caret denotes a function which is given on the boundary, nj means the 
direction cosine of the outward normal to the boundary with respect to co-ordinate xj, and 6, is 
Kronecker’s delta. The free surface condition is expressed as 

where 4 is the position of the free surface and Sf means the free surface. As the initial condition, 
velocity and pressure are given over the whole flow field: 

where up and p o  are velocity and pressure at time t = 0 respectively. 
The first term on the left-hand side of equation (3) represents the material differentiation. 

Introducing the material co-ordinate X i ,  velocity and pressure concerned with the spatial 
co-ordinate xi can be transformed into the form 

The co-ordinate X i  is usually referred to as the Lagrangian co-ordinate. Using equations (10) 
and (1 l), equations (3)-(7) can be rewritten in the following form. The equations of motion and 
continuity are 

Ui,i=O in V, (1 3) 

the boundary conditions on S1 and S2 are 
A 

U i = U i  on S1, 
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and the free surface condition is 

where Fi and N j  are body forces and the direction cosine of the outward normal on the boundary 
in terms of the co-ordinate Xi respectively. The position of the free surface is 

Y(Xi9 t )=y(x i ,  t ) ,  (17) 

where Y is the free surface position in terms of the co-ordinate Xi. As the initial condition, 
velocity and pressure are given as functions of the material co-ordinate Xi: 

ui= UP(Xi), (18) 

P = Pyx,), (19) 

where U o  and Po are velocity and pressure at time t = O  respectively. 

3. NUMERICAL APPROXIMATIONS 

The total time Tis divided into a number of short time increments At. Each time point is denoted 
by n. Velocity and pressure at the nth time point can be defined as 

u; = U,(XT, t"), (20) 

P" = P ( x ; ,  t"), (21) 

where X l  denotes the Lagrangian co-ordinate at the nth time point. Velocity and pressure at the 
(n+  1)th time point can be defined in the form 

u;+l= U , ( X f + l ,  tn+l ) ,  (22) 

p n + l =  P(Xf+' ,  t"+l) .  (231 
The Lagrangian co-ordinate X;' is expressed as 

At 
2 

x; + 1 x; + 1 ex; +-p; + u;"). 
From equation (16) the free surface position can be obtained as 

Y ( X ? + l ,  t "+ l )=  Y ( X ! + l ,  t " ) .  

This means that the free surface position always takes the same value as a function of the 
Lagrangian co-ordinate X i .  Namely, this fact expresses that the fluid particle on the free surface 
always remains on the free surface. In a practical computation it is not necessary to take equation 
(25) into account. In the Lagrangian treatment, using equations (20) and (22), the material 
differentiation can be approximated in the form 

Substituting equation (26) into equation (12), the equation of motion can be discretized into 
u;+'-u; 1 

At P 
= -- P y  1 + v( u;, j +  uy, i), j t  F ;  
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The equation of continuity is discretized as 

The boundary conditions corresponding to equations (14) and (15) are described by 

The analysis presented in this paper is to pursue the unknown variables U:" and P"" to satisfy 
equations (27) and (28) with the boundary conditions (29) and (30) starting from the known 
variables Uq and P". 

For the discritization of the material function the finite element method is successfully used. 
The interpolations for velocity and pressure can be expressed as 

ui=(Dauai, (31) 

P = @a Pa, (32) 
where @a is the interpolation function and Uui and Pa represent the nodal values at the clth node of 
the finite element. The corresponding weighting functions are expressed in the form 

UT = u;, (33) 

P*=@.,P,*. (34) 
The correction potential q5 and the corresponding weighting function will be intoduced and 
interpolated as follows: 

In the conventional analysis the mixed interpolation for velocity and pressure is usually used. In 
contrast, this paper employs equations (3 1)-(36) as the interpolation equations. This can be done 
because velocity and pressure can be computed employing the mutually independent equations. 
The linear interpolation function based on the three-node triangular element for both velocity 
and pressure is employed. The usual finite element procedure leads to the finite element equation. 
The precise form will be described in the following sections. 

4. NUMERICAL STUDIES 

For numerical studies the propagation and deformation of a solitary wave in a rectangular 
channel are calculated. If the stillwater depth is uniform, the solitary wave propagates without 
deformation. Referring to this phenomenon, the reliability of the analysis can be investigated. 
A solitary wave is essentially a wave that has infinite wavelength, but in this study the behaviour 
in a channel of limited length is examined. The splashing of the solitary wave is also investigated 
to the walls of both sides of the channel. The initial condition is assumed as Laitone's first 
approximation:' 

C= /[ gd (1 +:)I, 137) 
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V = J(3gd) ( :r2 ( f )sech’ [ J( a $) (X  - Ct )] tanh [ J( t $ ) ( X  - Ct )] , (39) 

Y, = d + H sech2[ J( t $ ) ( X  - Ct )] , 

P=pg(Y,- Y ) ,  (41) 
where C, U ,  V, P and Y, denote wave velocity, velocities of directions X and Y, pressure and wave 
height from the bottom respectively and g, d and H represent gravitational acceleration, water 
depth and wave height of a solitary wave respectively. To examine the run-up height R of 
a solitary wave on a vertical wall, an analytical approximation can be obtained by the following 
equation: 

To decide the channel length L, the following equation is used 
L 112 

- 2 6.9 (k) 
d (43) 

The analysis domain is limited to the place where the wave height of the solitary wave is equal to 
or less than H/1000. This value is determined considering the length of the analysis domain to be 
effective for the solitary wave. Thus equation (42) is obtained by Laitone’s approximation 
(Figure 2). 

As numerical studies, two types of solitary wave are analysed. The dimensions and conditions 
of the wave of Example 1 are given in Tables I and 11. The initial condition is shown in Figure 3. 
In this figure the scale of direction Y is 10 times larger than that of direction X. The figure shows 
the finite element mesh, velocity vectors and pressure distribution. Example 2 is a wave which is 
higher than that of Example 1. The dimensions and conditions of Example 2 are shown in Tables 
I1 and 111. The initial condition is shown in Figure 4. The scale of direction Y is four times larger 
than that of direction X. 

Figure 2. Solitary wave profile 
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Table I. Solitary wave Example I 

Length of channel 300 m 
Stillwater depth 10m 
Wave height 0.5 m 
Total number of nodal points 1089 
Total number of elements 1920 
A X  2.5 m 
A Y  1.25 m 

Table 11. Computational conditions of Examples 1 and 2 

Time increment 0.01 s 
Density 1 tm-3  
Kinematic viscosity coefficient Om's-' 
Gravitational acceleration 9.8 m s-' 

Table 111. Solitary wave Example 2 

Length of channel 160m 
Still water depth 10 m 
Wave height 2m 
Total number of nodal points 1161 
Total number of elements 2048 
A X  1.25 m 
A Y  1.25 m 

5. METHOD A 

5.1. Basic concept 

The numerical analysis referred to as Method A (the velocity correction method) is described in 
this section. By discretizing the equation of motion, the intermediate velocity can be obtained. 
However, this velocity may not satisfy the equation of continuity. To correct the obtained 
intermediate velocity, the correction potential is introduced. Using the equation of continuity, the 
Poisson equation can be derived for the correction potential. To solve the resultant Poisson 
equation, the correction velocity can be derived. 

iieferring to equation (27), the intermediate velocity 61" is defined in the form 

The intermediate velocity 0;' may not satisfy the equation of continuity. Thus velocity 
UIi' can be obtained by correcting the intermediate velocity @" to satisfy the equation of 
continuity. Taking the rotation on both sides of equations (27) and (44), the following relation can 
be obtained: 

rot u;" =rot V";+l. (45) 
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This equation means that 
u;+ 1 = i j ; + 1  + 4, i ,  

where 4 is a scalar which is referred to as the correction potential. Taking the divergence on both 
sides of equation (46), it follows that 

(47) u!J t 1 = v":; 1 + 4, ii, 
I ,  I 

Substituting the equation of continuity (28) into equation (47), the equation for 4 can be derived 
as 

4 9 I1 . . = - @ e l ,  I ,  I (48) 
Substituting equations (27) and (44) into equation (47), the equation of pressure can be expressed 
as 

Integrating equation (49) and defining the integral constant as zero, the equation for pressure is 
described in the form 

The algorithm of Method A can be summarized as follows. 

1. The intermediate velocity 0;" is calculated 

2. Correction potential 4 is calculated 
4 ..=-U?tl. I ,  I 

u;+' = v"r+ 1 + 4 , i .  

. I1 

3. Velocity U;+' is calculated: 

4. Pressure Pn+l is calculated: 

p"+l -  P - P" -- 4 ,  
At (54) 

5. U;+' ,  P"" are replaced with Ur+l,P" and proceed to the next time cycle. 

5.2. Variational equations 

multiplied by the weighting function U? and integrated by parts over the domain V to give 
To obtain the finite element equations, the variational forms should be derived. Equation (51) is 

( UT Q' + ' )d V= ( U i  U;)d V J v  J v  
(U:iP")dV-v U ~ j ( U ~ j + U ~ , i ) d V +  (UfF;)dV+Cr 

J V  J V  
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P" * 6 i j +  v ( U ~  j +  Uy, i) (56) 

Equation (52) is multiplied by the weighting function 4* and integrated by parts over the domain 
V to give 

(57) 

Equation (53) is multiplied by the weighting function U: and integrated by parts over the domain 
V to give 

r r r 

Equation (54) is multiplied by the weighting function P* and integrated by parts over the domain 
V to give 

Iv(P* P"+')dV= (59) 

On the basis of equations (55)-(59) the finite element method will be derived. As the natural 
boundary conditions, several types of boundary conditions are included in the variational 
equations. Therefore it is necessary to clarify the natural boundary conditions which can be 
handled with these variational equations before the finite element equations are formulated. 

5.3. Boundary conditions 

The boundary conditions in Figure 5 can be explained as follows: 

6) I?:+'=ci on sl, 

on s,;  (61) 

(ii) 4 , i . N i = f i  on S1, (62) 

4=6 onSZ; (63) 
(iii) ur+'=ci on sl .  (64) 

Item (i) is the boundary condition associated with equation (51). Equation (60) means that the 
intermediate velocity on the boundary is assumed to be the same as the boundary velocity. 

I 

T 
......................... 

V 

~~ A 

Figure 5. Boundary condition 



816 M. HAYASHI, K. HATANAKA A N D  M. KAWAHARA 

Equation (61) expresses the fact that the surface force is zero on the free surface boundary. 
Equation (61) can be considered as the natural boundary condition of equation (56). Item (ii) is 
associated with equation (52). The boundary condition expressed by equation (62) can be imposed 
as the natural boundary condition of equation (57). Normally ti is given as zero. This means that 
the normal gradient of pressure must always be constant with respect to time. Equatiqn (63) gives 
the fundamental basis on which the pressure is measured. Thus normally function 4 is given as 
zero. Item (iii) is the boundary condition for the new velocity computed at the (n + 1)th time point. 

5.4. Finite element equations 

The finite element equations can be derived in the following form from equations (55) and 
(57)-(59) using the interpolation function equations (31), (32) and (35) and the weighting function 
equations (33), (34) and (36): 

M$'6;:'=M,"pU;i+At - H , " ~ ~ P , " - v S , " ~ ~ ~ U ; ~ + N , " F , " ~ + ~ , " ~  (65) c 
- 

M,"; 1 pi+ 1 = Mn p;f -!? + 1 
a, 4 B Y  At 

where 

Nu = (@a)d J', b 

IS 

Ma, = (@a @ )d v, b 

I 
I 

S . .= (@a,,@,,,)dJ'.dij+ (@a,j@B,i)dv, 
4 J  I V  

Aaipi= (@a,i@p,i)dv, Ha,i=Iv(@a@,ddv, Haip=H$, 

Tai = (@,&)dS, hai= (aaFi)dS, 

in which Map means the lumped mass matrix obtained from the consistent matrix Map. Super- 
script n expresses the value at the nth time point. Superscript n of the matrix denotes the time 
point at which the coefficient matrix is computed. Using the Lagrangian finite element method, 
the element form changes at each time point, because the domain to be analysed changes in time. 
Thus the coefficient matrix should be reformulated at each time point. The co-ordinate at the 
(n + 1)th time point is originally unknown but can be calculated using iteration. 

5.5. Algorithm 

the following form 
The algorithm of the Lagrangian finite element method using Method A can be expressed in 

(a) Set m=O and U;+'(O) is assigned as U ; .  
(b) The co-ordinates of the nodal points XT+lfm) are calculated 



FREE SURFACE NAVIER-STOKES FLOW 817 

(c) The intermediate velocity 6;' is calculated: 

(d) Correction potential 4 is calculated: 
n + l  " n + l + f i ; + l .  4D = Haoi upi 

(e) Velocity U;+l(m+l)  is calculated: 

l\;;;f,+' U g n i + 1 ( m + l ) -  - M ; ; ~  - 0;;' + H : ; ~  4@. 
(f) Pressure pn+l(m+l)  is ' calculated: 

fg) If \ u ; + l ( m + l ) -  U l + ' ( @ [  < E  is not satisfied, then m=m+ 1 and return to step (b). 
(h) U;+l(m+l),  Pn+l (m+l )  are replaced with U; ,  P" and proceed to the next iteration cycle. 

The number of iterations within one time point is denoted by (m). 

5.6. Numerical study 

Figure 6 shows the finite element mesh representing the solitary wave propagation, the 
computed velocity and pressure at the times when the run-up height of a solitary wave on a right 
wall becomes maximum, when the wave returns to the centred position, when the run-up height 
of a solitary wave on a left wall becomes maximum and when the wave returns to the centred 
position again. The final computed results should be coincident with the initial configuration 
because the viscosity is neglected in this computation. Identical results have been obtained, which 
shows that the algorithm of Method A is adaptable to the analysis of free surface flows such as 
solitary wave propagation. 

6. METHODB 

6.1. Basic concept 

The numerical analysis referred to as Method B (the velocity correction method) is described in 
this section. Let separate the discretized equation of motion into two parts, the terms of velocity 
and pressure. The quantity which can be computed by the equation of motion dropping the 
pressure term is referred to as the intermediate velocity in this section. The intermediate velocity 
would not satisfy the equation of continuity. Therefore the pressure equation can be derived so as 
to satisfy the equation of continuity. 

The equation of motion can be split into two terms as 

U;+l= 6;+1+Aui, (74) 

6;+'= U ; + A t [ v ( U ? j +  Uy , i ) , j+P; ] .  (75) 

where 0;" is referred to as the intermediate velocity and is defined in the form 

The physical meaning of the intermediate velocity is not clear. The correction velocity AUl can be 
determined by the pressure term as 



st
ep

 =
 1

49
1 

, 
th

e
 =

 1
4.

91
 (s

ec
) 

......
......

......
......

......
.-~

~~
*~

~-&
~~

~,,
,,,,,,

,,,,..
.,.,,.

. 
I
.
.
.
,
.
"
.
.
.
.
.
.
.
.
"
 

.......
.. ..m

"
."
.-
...
- 

-
$

.
,
,
.
.
.
"

.
r

-
.
.
n

.
.
 

......
- 

d
.
.
 
n
 

F
IG

. 
ME

SH
 D

IV
IS

IO
N 

p
 z u 

FI
G.

 
VE

LO
CI

TY
 V

EC
TO

RS
 

I 
-
 : 

1
.0

 
IM

/S
l 

1 

0
.0

 

L
O
 

1
0
.0

 

I0
0

 
)o

O
 

*L
o 

3
&

0
 

Z
O

 
4a
 o

 
(a
 o 

S
O

 0
 

so
. 0

 
6

0
. 0

 

60
.0

 
W

O
 

m.
 o 

6
0

.0
 

la
0

 
9
0
.0

 

W
.0

 
1

0
0

 0 

/
 
/
 

/
 

FI
G.

 
PR

ES
SU

RE
 O

IS
TR

IB
UT

IO
N 

B 
FI

G.
 
ME

SH
 D

IV
IS

IO
N 

-~
sa

m
 -m

oo
 

-m
 m

 
-s

o 
00

 
-%

 0
0 

a
m

 
10

 m
 

so
 m

 
10
 m

 
12

0 
m

 
IS

O 
w

 
In

1 

Th
e 

ru
n-

up
 h

ei
gh

t o
n 

a 
ri

gh
t w

al
l b

ec
om

es
 m

ax
im

um
 



st
ep

 
=

 4
47
3 

, 
tim

e 
=

 4
4.

73
 (

W
C

) 
nt

ep
 
=

 5
95

2 
, 

tim
e 

=
 5

9.
52

 (
ae

c)
 

F
IG

. 
flE

S
H

 
DI

VI
SI

ON
 

F.
IG

. 
flE

SH
 
OI

VI
SI

ON
 

FI
G.

 
VE

LO
CI

TY
 
VE

CT
OR

S 
I 
-
 :

 
1.

0 
lV

/S
l 

I 

F
IG

. 
P

R
E

S
S

U
R

E
 
DI

ST
RI

BU
TI

ON
 

.
.

.
.

.
.

.
 ,

.
,

I
 

-1
50

.0
0 

-l
2

0
.0

0
 

-I
O

.O
O

 
-6

0.
00

 
-
3
0
0
0
 

0.
00
 

30
.0
0 

6
0
0
0
 

50
.0

0 
1

2
0

0
0

 
15

0.
00

 
m

i 

.......
.......

.......
.......

.......
-.---

..-....
..... 

.......
.......

.. 
..... 

..-..-
 

.........
 

........... 
F

IG
. 

VE
LO

CI
TY

 V
EC

TO
RS

 
I 
-
 : 

1
.0

 
lV

/S
l 

I 

0
.0

 

10
. 

ID
 0

 

20
. 

ze
 0

 

>
I
.
 

1
0
 0

 

IO
. 

.e 
0 

ID
. 

I
0
0
 

60
. 

-0
 

ID
. 

1c
 0

 

ID
 

an
 o 

so
 

90
. 0

 

F
IG

. 
P

R
E

S
S

U
R

E
 O

IS
TR

IB
UT

IO
N 

,
,

 .
.

,
,

T
I

-
 

I
.

 1
 

I
,

 I 
I
 

I
 

I
1

 

-1
5

o
.o

~
 
-1

2
e

w
 

-s
o.

oo
 

-6
o

.0
0

 
-R

I.
OO

 
P

P
 

30
.0
0 

w
-o

o
 

9o
.w

 
12

0.
00

 
1

6
0

.w
 

U
ll

 

T
he

 r
un

-u
p 

he
ig

ht
 o

n 
a 

le
ft 

w
al

l b
ec

om
es

 m
ax

im
um

 
T

he
 w

av
e 

re
tu

rn
s 
to
 th

e 
ce

nt
er

 p
os

iti
on

 

Fi
gu

re
 6

. 
C

om
pu

te
d 

re
su

lt 
by

 M
et

ho
d 

A 



820 M. HAYASHI, K. HATANAKA AND M. KAWAHARA 

Thus equation (74) can be rewritten as 

Taking the divergence on both sides of equation (77) and substituting that equation into the 
equation of continuity (28), the pressure Poisson equation can be obtained as 

The algorithm of Method B can be summarized as follows. 

1. The intermediate velocity 6;" is calculated: 

Or+' = U ; +  At [v(U:j+ Uy,i),j + F : ]  

2. Pressure P"+l is calculated: 

3. Velocity Ur+' is calculated 

4. U:+l  is replaced with U ;  and proceed to the next time cycle. 

6.2. Variational equations 

multiplied by the weighting function U l  and integrated by parts over the domain V to give 
To obtain the finite element equations, the variational forms should be derived. Equation (79) is 

(UTQ+')dV= ( U i  Ur)dV-At v U t j ( U c j +  Uy,i)dV- (UlF:)dV-C: , (82) 

(83) 

J'V b ( b ) 
= U i  [ v ( U ~  j +  U;,i)] * NjdS. 

IS 

Equation (80) is multiplied by the weighting function P* and integrated over the domain V to 
give 

IV ( P,*, P:: )d V = - ( P *  u"y.7 ) d V+ (P* P:: ) - N i  dS. 

Equation (81) is multiplied by the weighting function U f  and integrated by parts over the 
domain V to give 

(UTUy") dV= (Utu";") dV- 
J'V J'v 

On the basis of equations (82)-(85) the finite element method will be derived. As the natural 
boundary conditions, several conditions can be considered in the variational equations. Therefore 
it is necessary to clarify the natural boundary conditions which can be handled with these 
variational equations before the finite element equations are formulated. 
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6.3. Boundary conditions 

The boundary conditions in Figure 7 can be explained as follows: 

6) 
(ii) 

pn+'=PI o n s Z ;  (88) 

(iii) urf1=ci on sl. (89) 

Item (i) is the boundary condition associated with equation (79). It is important that no part of the 
intermediate velocity should be specified, because the intermediate velocity is not the actual 
velocity. If the boundary condition for the specified velocity was imposed on equation (79), the 
computation would be divergent. Equation (79) is the explicit form; therefore the computation 
can be carried out without any specified intermediate velocity boundary condition. Equation (86) 
corresponds to the free surface boundary condition with equation (88). Equation (87) should be 
discussed more precisely. The following four cases were carried out in our numerical experiments. 
For each boundary S1 -1 and S1 - 2  shown in Figure 7 the boundary condition must be imposed 
separately: 

(3) 

(4) 

apn+1 apn+l 
an at -0 onS1-2; -32 ( i 2 f O )  and -- -- 

-0 onS1-,. -pg and -- 
apn + 1 -- apn+l 

an  at 

......................... 

4 - 1  I [ ~ A [ 11-1 

(95) 

L J 

I. Sl 
4 - 2  

4 

Figure 7. Boundary condition 
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Case ( 1 )  means that the pressure gradients both normal and tangential to the wall are equal to 
zero. Case (2) expresses that the pressure gradient in the normal direction on the boundary 
S1 - and in the tangential direction on the boundary S ,  - are equal to zero. The two equations 
for r1 and rz  can be derived as follows. Separating the equation of motion into normal and 
tangential directions, we obtain 

where it is found that the second and third terms of the right-hand sides are the parts of the 
intermediate velocity: 

Using 'the intermediate velocity, the following expressions can be obtained 
u": + 1 - u: + 1 

= P  (99) At 9 

u:'l-u," Q'1-u: 
rl=-=- - 

At 

In equations (99) and (loo), putting r1 = r2 = 0, the boundary conditions can be converted to those 
of the intermediate velocity: 

Case (3)  is the Dirichlet condition that pressure is specified on the boundaries S1-, and S 1 - 2 .  
Case (4) expresses that the pressure gradients tangential to the boundary S 1  - and normal to the 
boundary S l - z  are given. The free surface problem is analysed using these four cases of the 
boundary conditions. In computations by the authors' group, numerical results have been 
obtained only using the condition in case (4) for solitary wave propagation. This problem is the 
vertical two-dimensional problem including the gravitational effect. Thus the condition in case 
(4) seems useful. However, in the case of cavity flow the condition in case (2) would be useful. 

6.4. Finite element equations 

The finite element equations can be derived in the following form from equations (82), (84) and 
(85) using the interpolation function equations (3 1) and (32) and the weighting function equations 
(33) and (34): 

M$lfi;:l = Mi,UU;;i-At(vS,"iaiU~j- N:Fii-Z:i) ,  (103) 



FREE SURFACE NAVIER-STOKES FLOW 823 

where 

in which Map means the lumped mass matrix obtained from the consistent matrix Map. 

6.5. Algorithm 

following form. 
The algorithm of the Lagrangian finite element method using Method B can be expressed in the 

(a) Set m=O and U;+l(') is assigned as U ; .  
(b) The co-ordinates of the nodal points X;+'("') are calculated 

(c) The intermediate velocity 0;' is calculated: 

f i l l  0;: = M , " p  Uji - At(vS,"ipi U j j  - N," F,"i - 2,"i). ( 107) 
(d) Pressure P n +  is calculated: 

(e) Velocity U;+ is calculated 

(f) If IU;+l(m+l)- U ; + l ( m ) I < ~  is not satisfied, then m = m +  1 and return to step (b). 
(g) u ; + l ( m + 1 ) .  IS replaced with U:, and proceed to the next iteration cycle. 

The number of iterations within one time point is denoted by (m). 

6.6. Numerical study 

Figure 8 shows the finite element mesh representing the solitary wave propagation, the 
computed velocity and pressure at the times when the run-up height of a solitary wave on a right 
wall becomes maximum, when the wave returns to the centred position, when the run-up height 
of a solitary wave on a left wall becomes maximum and when the wave returns to the centred 
position again. The final computed results should be coincident with the initial configuration 
because the viscosity is neglected in this computation. Identical results have been obtained, which 
shows that the algorithm of Method B is adaptable to the analysis of free surface flows such as 
solitary wave propagation. 
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7. METHODC 

7.1. Basic concept 

The numerical analysis referred to as Method C is described in this section. The previous two 
methods employed the intermediate velocity to derive the pressure Poisson equation. In contrast, 
Method C derives the pressure equation directly from the equation of motion. Moreover, the free 
surface condition of Method B is not sufficiently clear. To overcome the free surface condition, the 
equations of Method C are derived from the equations of motion and continuity in a direct 
manner. The pressure Poisson equation is derived from the following process. 

Taking the divergence on both sides of equation (27), the following equation can be obtained 

Substituting equation (28) into equation (1 10) leads to 

Rearranging the terms, the pressure Poisson equation can be obtained: 

Referring to equation (27), velocity U!" is derived as follows: 

The algorithm of Method C can be summarized as follows. 

1. Pressure P"" is calculated: 

2. Velocity U:" is calculated: 

U!" = Ur - At -P:: ' - V (  U t  j + Uy,i), j -  F! . (: ) 
3. U:" is replaced with Ur and proceed to the next iteration cycle. 

7.2. Variational equations 

To obtain the finite element equations, the variational forms should be derived. Equation (1 14) 
is multiplied by the weighting function P* and integrated by parts over the domain V to give 

[v(P:P;?l)dV= --(P*UYi)dV+p P P,*,(U;,+ U;,i),jdV+p (P:Fr)dV+R;+', (116) At 
n n n 

Qi - (P*P::').NidS-p P*(U;j+U;,i),j.NidS-p J (P*Fr).NidS. (117) "+A Js S 

The pressure gradient P,",' ' * N i  is expressed by the following equation where the Navier-Stokes 
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equation is multiplied by the direction cosines of the outward normal on the boundary: 

Substituting equation (1 18) into equation (1 17) leads to 

Only the first term of equation (119) remains and it is obtained that 

Using a linear interpolation function, the second term of the right-hand side of equation (116) is 
dropped: 

Equation (115) is multiplied by the weighting function U:  and integrated by parts over the 
domain V to give 

7.3. Boundary conditions 

The boundary conditions in Figure 9 can be explained as follows: 

I 

i 
. .. _ _ _ _  _ _  . . ... .. .. . . .. ... 

V 

~~ A 
Sl 

Figure 9. Boundary condition 
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(ii) 

Item (i) is the boundary condition for the pressure Poisson equation (1 14). Referring to equation 
(124), the velocity at the (n+ 1)th time point, U t i  ', is required to compute the term l2;". 
Generally, U;'' is an unknown variable. However, in the computation of the rectangular channel 
shown in Figure 9 the term f i r+ '  can be computed as zero, because the product U;+'.Ni is 
always zero. Item (ii) is the boundary condition for equation (115). 

7.4. Finite element equations 

The finite element equations can be derived in the following form from equations (121) and 
(122) using the interpolation function equations (31) and (32) and the weighting function 
equations (33) and (34): 

(128) 
A:$/ P ; + ' =  --H:BiU;i+pN,"iF:i P +f i r+ ' ,  

At 

where 

P I- 

Cai = (aa&)dS, Js fIai = (Qa?i)dS, 
J S  

in which A,, means the lumped mass matrix obtained from the consistent matrix M a p .  

7.5. Algorithm 

the following forms: 
The algorithm of the Lagrangian finite element method using Method C can be expressed in 

(a) Set m=O and U~+"o '  is assigned as Uy. 
(b) The co-ordinates of the nodal points X;+'("') are calculated: 
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(d) Velocity U ; + l ( m + l )  IS . calculated 

P;f+'("+') - vS". a@J + N," F,": + g,"i 
(e) If I uy+ l ( m +  1) - U i  n +  l ( m )  I < E is not satisfied, then m = rn + 1 and return to step (b). 
(f) U;+l(m+l)  is replaced with U ;  and proceed to the next iteration cycle. 

The number of iterations within one time point is denoted by (m). 

7.6. Numerical study 

Figure 10 shows the finite element mesh representing the solitary wave propagation, the 
computed velocity and pressure at the times when the run-up height of a solitary wave on a right 
wall becomes maximum, when the wave returns to the centred position, when the run-up height 
of a solitary wave on a left wall becomes maximum and when the wave returns to the centred 
position again. The final computed results should be coincident with the initial configuration 
because the viscosity is neglected in this computation. Identical results have been obtained, which 
shows that the algorithm of Method C is adaptable to the analysis of free surface flows such as 
solitary wave propagation. 

8. METHODD 

8.1. Basic concept 

The numerical analysis referred to as Method D is described in this section. To compute the 
term Q?+' on the left-hand side of equation (120), it is necessary to know the velocity at the 
(n+ l)th time point. At the time of computing velocity U?+' is not yet known. Therefore 
iteration is required. The formulation of Method D is the same as that of Method C except for the 
introduction of iteration. The basic concept can be written as follows. 

1 Set rn = 0 and pressure P"+ l ( m )  is . calculated: 

P,:.t = U t i  + p( uc j + qi), i j +  p l y i .  At 

2. Velocity Uy' is calculated: 

u; -.-At -p[li+l(m) -v(uy . + u? .) .-Fr . ) 1 I I 1 1  , I  (: u; + 1 ( m )  = 

3. Pressure P"' l(m+l) is calculated: 

p;i: I t m +  1 )  - - - P uzi + p( UEf + u;,; l(m)),ij+ pF:: 1 . At 

4 Velocity l )  is calculated 

U ; + l ( m + l ) _  v(u~;""' + u ; , p m ) ) , j - F ; + l  , ) - u; - A t  !.p;?l(m+l) - 

( P  

5. If I U ~ + l ( m + l ) - U q + l c m ) I < ~  is not satisfied, then r n = r n + l  and return to step 3. 
6. U ; + l ( m + l )  is replaced with Ur and proceed to the next iteration cycle. 



to
 

w
 

0
 

a
 0

 

10
.0

 

20
.0
 

30
.0
 

40
.0
. 

5
0

.0
 

60
. 

0
 

70
.0
- 

90
.0
 

BO
. 

0.
 

-I
m

 "
 

St
ep

 
=

 
14

91
 

, 
tim

e 
=

 
14

.9
1 

(s
et

) 

0.
 D

 

10
. 0

 

20
. 0

 

30
. 

0
 

do
. 0

 

5
0

 o 

n. 
o 

9
0
 o 

60
.0

 

80
.0

 

FI
G.

 
ME

SH
 D

IV
IS

IO
N 

to
. 

5
0

.0
 

60
. 

0 

10
. 

0 

10
.0
. 

9
0

.0
 0

.
0

 
50
.0
 

6
0

. 0
 

10
.0
 

8
0

. 0
 

30
.0
 

. 1
0

0
.0

 
/
 

st
ep

 
=

 
29

84
 

, 
tim

e 
=

 2
9.

84
 (

se
c)

 

FI
G.

 
M

ES
H

 
DI

VI
SI

ON
 

FI
G.

 
VE

LO
CI

TY
 V

EC
TO

il
S 

I 
-
 :

 
1

.0
 

lM
/S

l 
I 

z T P
 

T
he

 w
av

e 
re

tu
rn

s 
to

 th
e 
ce
nt
er
 p

os
iti

on
 



st
ep

 =
 4

47
3 

, 
ti

m
e 

=
 4

4.
73

 (
se

c)
 

st
ep

 =
 5

95
3 

, 
tim

e 
=

 5
9.

53
 (

se
c)

 

.......
.......

.......
.......

.......
 

.....
.....

.....
.....

. 
-
_
I
*
-
-
-
*
,
.
 

......
 .. ...

.....
 

,,..,.
.. 
,,,,
 ~

~
"~

~
~

,,
,,

,,
,,

.,
,,

,,
.~

 
.. ',.IIY...

 
.....
 -1.- 

......
. -..

.<
 ....
 

FI
G.

 
M

ES
H

 
D

IV
IS

IO
N

 
FI

G.
 

M
ES

H 
D

IV
IS

IO
N

 

z > 5 

0.
0 

10
. 0

 

2
0

 
0 

30
. 
0 

40
.0
 

5
0

.0
 

60
. 
0 

10
.0
 

ID
. 

0 

90
. 

0 

0.
 0
 

1
0

.0
 

20
. 
0 

. 
10
.0
 

40
.0
 

5
0

.0
 

60
. 
0
 

70
. 

0 

8
0

.0
 

9
0

.0
 

-
 

FI
G.

 
P

R
E

S
S

U
R

E
 

D
IS

T
R

IB
U

T
IO

N
 

, 
, 

,
,

I
 I 

I
 

I 
I 

I 
I 

I
"

"
'

 

-3
51
3-
00
 
-I
20
.0
0 

-9
0.
00
 

-6
0.
00
 

-3
0.
00
 

0.
00
 

30
.0
0 

60
.0
0 

90
.0
0 

12
0-
00
 

15
0-

00
 

in
1 

-D
.o

 
r 

'O
'O
 

t? 
30

.0
 
-
l 

40
.0
 

E; 
so

.0
 

$
 

a
0

 

so
. 0

 

7
0

.0
 

BD
. 

0 

90
.0
 

T
he

 w
av

e 
re

tu
rn

s 
to
 th

e 
ce

nt
er

 p
os

iti
on

 
T

he
 r

un
-u

p 
he

ig
ht

 o
n 

a 
le

ft 
w

al
l b

ec
om

es
 m

ax
im

um
 Fi

gu
re

 1
0.

 C
om

pu
te

d 
re

su
lt 

by
 M

et
ho

d 
C

 



832 M. HAYASHI, K. HATANAKA AND M. KAWAHARA 

8.2. Boundary conditions 

The boundary conditions in Figure 11 can be explained as follows: 

(ii) 

pn+1=P onS,; 

u;" =ci on sl, 

~ " + 1  -6ij+v(u;;1 +u;,:1) .Nj=fi=0 on s2. (140) (-P 1 
Item (i) is the boundary condition for the pressure Poisson equation. Item (ii) is the boundary 
condition for equation (136). This free surface boundary condition must be evaluated at the 
(n + 1)th time step essentially. Using the iterative method, this objective can be attained. 

8.3. Algorithm 

using the notations given in equations (128) and (129). 
The algorithm of the Lagrangian finite element method using Method D can be expressed 

(a) Set m=O and Ur+l (o)  is assigned as Uf  . 
(b) The co-ordinates of the nodal points X f + l ( m )  are calculated: 

(c) Pressure Pn+l(m) is calculated: 

(d) Velocity U ; +  l (m) is calculated: 

I\;i,"ilUi;,?l(m)=i\;jn aB u" Bi + A t  

(e) The co-ordinates of the nodal points X;+l(m+l) are calculated: 

v 
/ 

/ 

. ........ . .... . . ....... 

V 

~~ 4 

Figure 11. Boundary condition 
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Pressure p"+ l ( m +  is ' calculated: 

A,";; p;+ l ( m +  1) = -&Hipi qi + PN,"' 1 F,"+ 1 +f i r+  1 . 
At 

Velocity U l +  l ( m +  ') is calculated: 
1 u;~+ l ( m +  1) - - M,"p - Uii 

+ At -H,"$ l ( m +  l )  - vs"? ! j'JSn7 l ( m )  + N,"+' Fit 1 + 2"; 1 . (146) ) (: 4 J  

If I U l + l ( m + l ) -  Ul+l(m)l < E  is not satisfied, then m = m +  1 and return to step (e). 
U l + l ( m + l )  is . replaced with Ur and proceed to the next iteration cycle. 

The number of iterations within one time point is denoted by (m). 

8.4. Numerical study 

Figure 12 shows the finite element mesh representing the solitary wave propagation, the 
computed velocity and pressure at the times when the run-up height of a solitary wave on a right 
wall becomes maximum, when the wave returns to the centred position, when the run-up height 
of a solitary wave on a left wall becomes maximum and when the wave returns to the centred 
position again. The final computed results should be coincident with the initial configuration 
because the viscosity is neglected in this computation. Identical results have been obtained, which 
shows that the algorithm of Method D is adaptable to the analysis of free surface flows such as 
solitary wave propagation. 

9. COMPARISON OF METHODS OF SOLUTION 

The run-up height is calculated and compared with the analytical solution. The arrival time at 
which the wave will have the maximum value is calculated by equations (37) and (42). The wave 
height is computed by equation (40) and the computed error is evaluated as 

E = -  ' R - R c l  x loo%, 
R (147) 

where R is the analytical solution and Rc is the calculated run-up height. Tables IV-VII show the 
comparison of the wave height and the arrival time at the times when the wave runs up on the 
right wall, when the wave returns to the centre position, when the wave runs up on the left wall 
and when the wave returns to the centre position. The ratio of the computed value to the 
analytical value is also represented. All values show good agreement. The ratio of wave height to 
water depth for Example 1 is rather small. The deformation of the wave is moderate. Therefore 
the distortion of the mesh is insignificant. The analysis can be continued without the rezoning 
technique. 

10. DISCUSSION 

As stated in Section 3, the purpose of the present paper is to investigate the solution method of 
unknown variables U?+' and P"+l satisfying the differential equations (27) and (28) with 
boundary condition equations (29) and (30) starting from the known variables U" and P". To 
obtain a stable computation, the fractional step method employs the fact that the equation of 
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Table IV. Comparison at the time when the wave runs up on the right wall 

Method Wave height (m) Arrival time (s) E (Yo) 

A 1.0264 
B 1.0263 
C 1.026 1 
D 1 -026 1 
Analytical 1.0125 

14.9 1 1.37 
14.91 1.36 
14.9 1 1.34 
14.9 1 1.34 
14.79 - 

Table V. Comparison at  the time when the wave returns to the centre position 

Method Wave height (m) Arrival time (s) E (%) 

A 0.5022 29.82 0.44 
B 0.5014 29.84 0.28 
C 0.5013 29.84 0.26 
D 0.5014 2984 028 
Analytical 05000 29.57 - 

Table VI. Comparison at  the time when the wave runs up on the left wall 

Method Wave height (m) Arrival time (s) E (Yo) 

A 1.0262 
B 1.0244 
C 1.0240 
D 1.0237 
Analytical 1.0125 

44.73 1.35 
4473 1.18 
44.73 1.14 
4472 1-1 1 
44.36 - 

Table VII. Comparison at  the time when the wave returns to the centre position 

Method Wave height (m) Arrival time (s) E (%) 

A 
B 
C 
D 
Analytical 

0.5026 
0.5012 
0.5008 
0-5009 
0-5000 

59.52 052 
59.53 0.24 
59.53 0.16 
59.53 0.18 
59-15 - 

motion is differentiated with respect to co-ordinates to consider the equation of continuity. Thus, 
to correlate the resultant equations with the original equations, new boundary conditions must be 
introduced. 

In Method A pressure is computed from equation (50), which is derived from equation (49) with 
the integral constant considered zero. Multiplying equation (49) by unit normal Ni and using the 
equation 

leads to the following form: 
$ , i . N i = P = O  on S1 ( 148) 

P;; '+ lNi=PYi-Ni  on S1.  ( 149) 
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This means that the normal gradient of pressure on the boundary S1, aP/aNi ,  at the (n + 1)th time 
point should be coincident with dP/dNi at the nth time point on the boundary S1. Thus it is seen 
that Method A is only valid if equation (149) is always valid on the boundary S1. Considering the 
solitary wave problem, equation (149) is valid. 

In Method B the boundary condition for pressure is not very clear. In the authors' numerical 
computations, equations (94) and (95) were used. The computed results were in good agreement 
with the analytical solution. However, this condition can be used only for the solitary wave 
propagation problem and is not adaptable to the more general problem. Moreover, Method 
B employs equations (86) and (88) as the boundary condition for the equation of motion on the 
free surface boundary. These equations are not exact in describing the boundary condition 
equation (6) on the free surface. Thus Method B is not always suitable for general numerical 
computation in spite of the fact that the computation is stable. 

In Method C the boundary condition for the free surface is 

P " ' 1 * 6 i j + v ( U ~ j + U ; , i )  - N j = f i = O  on Sz; t 1 50) (-; 
but precisely, this condition should be 

To introduce the boundary condition equation (15 11, the iteration method must be introduced. 
This is the reason why Method D is employed. From the authors' numerical computations, there 
is no difference between the results by Method C and those by Method D. Therefore it is 
concluded that Method C is the most recommendable for fluid flow analysis by the fractional step 
method. 

To pursue the limitation of the present Lagrangian method, Example 2 is analysed employing 
Method C. The dimensions and conditions of the solitary wave in Example 2 are represented in 
Tables I1 and 111. Figure 13 shows the computed result at the time when the run-up height of 
a solitary wave on a right wall becomes maximum. A comparison for Example 2 is given in Table 
VIII. The computed wave height at the time when the wave runs up on the right wall and the 
arrival time are represented. The computations were terminated because of the extreme distortion 
of the finite element mesh. Looking at Figure 14, unexpected velocity distributions are computed. 
The computation was tried using a shorter time increment but there was no improvement. Thus 
in cases where the ratio of the wave height to the water depth, CI, is large, the rezoning technique 
should be introduced. In example 1 we used a=005 and in Example 2, a=O2. Therefore 
computation by the Lagrangian description could be useful with CI less than 0 2  for solitary wave 
propagation. 

11. CONCLUSIONS 

The results of this paper can be summarized as follows. 

1. A finite element method based on the Lagrangian description has been presented to solve 
unsteady viscous fluid flow with a moving free surface. The Lagrangian method is suitable 
to pursue the free surface position because the nodal points of the flow field always move 
with the fluid. 

2. To solve the finite element equation, the fractional step method has been used. The 
advantage of this method is to be able to use the same interpolation function for both 
velocity and pressure. This simplifies the computation. 
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Figure 13. Computed result when the run-up height on a right wall becomes maximum by Method C 

Table VIII. Comparison at the time when the wave runs up on the right wall 

Method Wave height (m) Arrival time (s)  E (Yo) 

C 4.4859 
Analytical 4.2000 

7.70 6.8 1 
7.38 - 
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step = 1214 , time = 12.14 (sec) 
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Figure 14. The calculation is divergent 

3 .  Four variations of the fractional step method are presented and compared with each other. 
It is concluded that Method C is recommendable for practical computations. 

4. The fractional step methods previously presented by the authors’ group are effective, but 
attention must be paid to how to impose the boundary condition, especially for the 
condition of pressure. 

5. To solve solitary wave propagation with moderate wave height, the Lagrangian method is 
suitable, but to solve the high-wave propagation problem, an improvement such as the 
arbitrary Lagrangian-Eulerian method must be introduced. 
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